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Abstract: New Zealand kauri trees are threatened by the kauri dieback disease (Phytophthora
agathidicida (PA)). In this study, we investigate the use of pan-sharpened WorldView-2 (WV2) satellite
and Light Detection and Ranging (LiDAR) data for detecting stress symptoms in the canopy of kauri
trees. A total of 1089 reference crowns were located in the Waitakere Ranges west of Auckland
and assessed by fieldwork and the interpretation of aerial images. Canopy stress symptoms were
graded based on five basic stress levels and further refined for the first symptom stages. The crown
polygons were manually edited on a LiDAR crown height model. Crowns with a mean diameter
smaller than 4 m caused most outliers with the 1.8 m pixel size of the WV2 multispectral bands,
especially at the more advanced stress levels of dying and dead trees. The exclusion of crowns with
a diameter smaller than 4 m increased the correlation in an object-based random forest regression
from 0.85 to 0.89 with only WV2 attributes (root mean squared error (RMSE) of 0.48, mean absolute
error (MAE) of 0.34). Additional LiDAR attributes increased the correlation to 0.92 (RMSE of 0.43,
MAE of 0.31). A red/near-infrared (NIR) normalised difference vegetation index (NDVI) and a ratio
of the red and green bands were the most important indices for an assessment of the full range of
stress symptoms. For detection of the first stress symptoms, an NDVI on the red-edge and green
bands increased the performance. This study is the first to analyse the use of spaceborne images for
monitoring canopy stress symptoms in native New Zealand kauri forest. The method presented
shows promising results for a cost-efficient stress monitoring of kauri crowns over large areas. It will
be tested in a full processing chain with automatic kauri identification and crown segmentation.
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1. Introduction

The deadly kauri dieback disease (Phytophthora agathidicida (PA)) was first officially confirmed as a
new pathogen by Beever in 2008 [1] in the Waitakere Ranges west of Auckland and later taxonomically
described by Weir et al. [2]. Meanwhile, it was detected over most of the natural distribution range
of New Zealand kauri [3]. The endemic kauri trees (Agathis australis) are a key species for the forest
ecosystems on the North Island [4], a famous tourist attraction, and are of high cultural significance
for Māori [5,6]. Regular monitoring of stress symptoms in tree canopies requires a cost-efficient,
objective method that is suitable for covering large areas and able to detect the first signs of stress.
Multispectral band and index combinations for the detection of kauri and canopy stress symptoms
have been identified by Meiforth et al. [7,8]. Airborne Light Detection and Ranging (LiDAR) data
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recently became available for the northern kauri forests, so that the main part of the distribution range
of kauri trees in New Zealand is now covered. In this study, we analyse the use of WorldView-2
(WV2) satellite data in combination with LiDAR data to detect stress symptoms in kauri trees in an
object-based approach on manually segmented kauri crowns.

1.1. Kauri Trees and Kauri Dieback Symptoms

Kauri trees show a large phenological variety, from young conical trees with dense foliage to
large open dome-shaped crowns (Figure 1). The mature trees develop a massive trunk and large
side branches and reach heights of up to 40 m in the study areas. The colour of the foliage in
non-symptomatic kauri varies from light green to a darker blue green, depending on the exposition
to light and thickness of the wax coating. The flat lanceolate needle-like leaves create a spiky foliage
surface. The foliage forms clusters in the medium growth stages and mature crowns show a more
open canopy [5], with visible branch material and gaps from an aerial viewpoint. Stress symptoms
of PA first become visible as yellowing and thinning of foliage, which exposes small top branches.
Later stages of stress lead to structural changes caused by an ongoing loss of foliage, with an increase
of visible bare branch material and gaps, until the tree dies [1,9]. The higher gap fraction increases the
influence of undergrowth on the canopy reflectance. Small trees with a conical shape first develop a
bare top on the main stem, while the foliage in the lower part of the canopy is affected in later stages.
However, these types of symptoms can also have other causes, such as continuing drought periods [10],
storm damage, or other diseases [1].

Figure 1. Kauri crown size classes: Non-symptomatic small, medium, and large kauri crowns, as a
profile on a Light Detection and Ranging (LiDAR) point cloud (a–c) [11] and on 7.5 cm aerial images
below (d–f) [12].

1.2. Research Background

High-resolution satellites have been successfully used to monitor forest health [13,14], both at a
stand level [15–19] and individual tree crown level [20–23].

Amongst the most widely used vegetation indices for canopy stress detection with broader
bandwidths of satellite images are combinations of near-infrared (NIR) and red bands, which are
responsive to changes in canopy chlorophyll and leaf biomass. Other widely used indices are based on
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red and green bands sensitive to stress-related changes in leaf pigment compositions and bands in the
NIR spectrum, which are influenced by the amount of leaf and canopy water and thus also structural
changes due to foliage loss [13,24–27].

A new generation of commercial high-resolution satellites, such as WorldView (WV) and RapidEye
(RE), launched in 2009 and 2008, respectively, has provided additional red-edge bands (WV, 705–745 nm;
RE, 690–730 nm). In green vegetation, the red-edge region covers a steep increase in reflectance values
between the red and NIR1 spectra and shows a high sensitivity to changes in chlorophyll, which causes
a blue shift of the central red-edge region. Several studies have successfully applied spectral indices
with red-edge bands from satellite data for stress detection in tree canopies. Oumar and Mutanga [28]
utilised indices on the NIR and red-edge bands from WV2 data to detect a decline in Eucalypt
plantations in South Africa. Ortiz et al. [17] detected early stages of bark beetle attack by combining
TerraSAR-X and RapidEye data. Eitel et al. [29] proved that a normalised difference vegetation index
(NDVI) with a red-edge band is suitable for detecting early stress symptoms in conifer woodland trees
in New Mexico.

Textural information derived from satellite imagery has successfully been used to assess structural
features in tree canopies [30–32]. It also has improved the analysis of stress symptoms in tree canopies,
especially in later stages of decline with structural changes in the canopy [19,23].

Stress symptoms in kauri trees were analysed with airborne hyperspectral data by Meiforth
et al. [8]. According to their study, a NIR/red NDVI, followed by indices with bands in the NIR and
red-edge range are the most important for describing the full range of stress symptoms. However,
pigment-sensitive indices with narrow green and red bands had a higher importance for the detection
of stress symptoms in smaller crowns with denser foliage. Indices with NIR bands, such as the water
band index (WBI) at 900 and 970 nm, were more relevant to describe stress symptoms in larger crown
sizes with an open crown structure. The NIR bands are sensitive to structural changes and changes in
the leaf water content. The paper recommends a stratified approach according to different growth
stages of kauri.

An appropriate spatial resolution for the target objects is important for the successful use of
satellite imagery in order to avoid mixed pixels with shadow, neighbouring vegetation, and soil [33].
In Meiforth et al. [8], a minimum crown diameter of 3 m was defined for stress detection in kauri trees
for the 1 m resolution of a hyperspectral image. Fassnacht et al. [34] found that the 5 m pixel resolution
of their HyMAP data (Integrated Spectronics) was too coarse to evaluate bark beetle infections at
crown level. However, dead trees could still be mapped with a high overall accuracy (84–96%).
Immitzer et al. [35] and Pu and Shawn [36] only used tree crowns that could be manually identified on
WV2 respective Ikonos images. Immitzer et al. [35] defined at least two pixels (=4 m) per object as
the minimum target size for an analysis of tree canopies with a WV2 image. Other studies analysed
larger forest stands. Meddens et al. [37] discovered that a spatial resolution of 2.4 m performed
best when mapping the infestation of forest stands with mountain pine beetle infection in Colorado.
They demonstrated that a higher spatial resolution also increases the variability within the same
level of crown damage and can cause a problematic “salt and pepper” effect in a pixel-based analysis.
Lottering [38] and Ismail et al. [39] showed that higher-resolution data (1.25 and <1.75 m) are better
suited to detecting early stages of stress in eucalyptus stands and a pine plantation, while later stages
of stress are best described with lower spatial resolutions of 2.5 and 2.3 m. To achieve a sub-pixel
horizontal accuracy in the processing of WV2 data, Aguilar et al. [40] recommended avoiding off-nadir
angles higher than 20◦. They achieved the highest spatial accuracies by using ortho-ready products
with third order three-dimensional (3D) rational functions with the supplied rational polynomial
coefficients, an accurate digital elevation model, and a polynomial adjustment with well distributed
ground control points.

An object-based approach is well-suited to handling a high variance in target objects [41–44].
Several studies have found that object-based methods are superior to pixel-based methods for single
tree crown analysis [35,45–47]. They have also been successfully applied for stress analysis and
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change detections in tree canopies [48–50]. For use in forest areas, an object-based approach requires a
prior segmentation of crowns with respect to homogenous forest stands. An object-based analysis
simplifies the combination of different data sources under the requirement that these are accurately
aligned [51–53]. However, an essential condition for utilising the advantages of an object-based
approach is that the pixel size is significantly smaller than the average size of the objects of interest [43].

The fusion of multispectral bands with a higher-resolution panchromatic channel, so-called
pan-sharpening, allows the creation of a higher spatial resolution multispectral image. It can improve
the use of textural attributes in an object-based analysis [54]. While some pan-sharpening methods can
alter the spectral information, certain techniques, such as the Gram–Schmidt and Ehlers pan-sharpening
methods, have been tested and shown to be superior for preserving the spectral values [55,56].

Stress symptoms in tree canopies caused by soil pathogens are expressed as a multifactor gradient
with different states of chlorosis and defoliation until only bare branches are left [26]. While classification
algorithms only distinguish between discrete classes, regression algorithms give a more detailed
description of symptom stages with a continuous output. A regression approach also facilitates a
more differentiated evaluation of changes in a time series. Training based on the correlation coefficient
allows regression models to handle a high variance in the data. Several studies have successfully used
regression approaches to analyse stress symptoms in tree canopies [19,57], predict tree mortality [58],
and evaluate foliar moisture [59]. However, a non-linear relationship in the numeric range of reference
values causes a shift between the scales of the reference and predicted values. Meiforth et al. [8]
enhanced the linearity by rescaling the value range and also suggested testing a two-step approach,
in which the dead and dying trees are first identified in a binary classification. The remaining stress
levels can then be analysed in a regression approach.

Light Detection and Ranging (LiDAR) systems generate an accurate, high-resolution,
three-dimensional point cloud, which enables to segment single tree crowns and homogenous
units of forest stands [60–65]. LiDAR data allows estimating crown parameters, such as the tree height,
crown shape, canopy density, foliage texture, and structural crown characteristics [66,67]. The LiDAR
intensity values add a spectral component as the amount of reflected energy at the peak amplitude of the
returned LiDAR signal in the near-infrared region, usually at 1064 or 1550 nm. Intensity data have been
successfully used to describe tree canopies and detect tree species [61,68–70]. The suitability of LiDAR
attributes for assessing structural crown characteristics as a measure of defoliation has been proven in
Scots pine forests at both stand level [71–73] and single tree level [72]. In combination with biochemical
and biophysical information from passive optical sensors, LiDAR data can demonstrably enhance
individual tree analysis [35,52,61,74,75]. The combination of different data sources requires accurate
spatial alignment. Data from airborne LiDAR systems (ALS) are usually the remote sensing data
with the highest spatial accuracy compared, for example, to photogrammetric data [76,77]. However,
the accuracy of terrain models derived from ALS ground data is impaired in terrain with steep slopes
and vegetation with dense foliage and undergrowth [76,78].

1.3. Objectives

Spectral indicators with a sensitivity to stress symptoms in kauri trees have already been defined
by Meiforth et al. [8] for use with an airborne multispectral system. This study analyses whether
these findings can be implemented in an operational detection strategy based on WV2 satellite data.
With LiDAR data available for most of the distribution range of New Zealand kauri, LiDAR-based
crown attributes were integrated for crown stratification and to test their use for stress detection.
The study pays special attention to differentiating early signs of stress. It has the following objectives:

1. Test the performance of WV2 attributes for crown-based stress detection in kauri trees and define
the recommended minimum crown size;

2. Test a two-step method on WV2 attributes by first identifying dead and dying trees in a
classification and then applying a regression for the remaining stress symptom levels;
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3. Test the performance of LiDAR attributes in combination with WV2 data for canopy
stress detection.

A minimum requirement for the performance of the developed method for a value range of
symptom levels from 1 to 5 is a root mean square error (RMSE) smaller than 0.5, so that the predicted
symptom values stay mainly within one reference symptom level. While the analysis in this study
is based on manually edited crowns, the application for monitoring requires additional steps to
automatically pre-segment crowns with respect to homogenous stand units for the existing LiDAR
data and to define kauri trees. To prepare for this full workflow, we edited the reference crowns for
this study on the LiDAR data.

2. Materials and Methods

2.1. Study Area

The Waitakere Ranges on the west coast of Auckland are amongst the highest PA-affected forest
areas, and the first officially confirmed site in New Zealand with a verified PA infection (Figure 2a, [1]).
The Ranges are characterised by a warm temperate climate and a rough terrain, with steep slopes and
elevations from sea level to 474 m [79]. The three selected study sites (Figure 2b) cover trees with the
full range of symptom stages in both homogenous and mixed stands, with mainly second-growth
kauri forests in the Maungaroa area, larger trees in the Kauri Grove area, and all growth stages of kauri
in the Cascades.

Figure 2. (a) Location of the Waitakere Ranges on the North Island of New Zealand west of Auckland City,
with the natural range of kauri distribution and Phytophthora agathidicida (PA)-positive samples [80,81].
(b) Study sites and extent of the remote sensing datasets in the Waitakere Ranges, with the reference
crowns marked in orange (background map: LINZ 2019 [82]).

2.2. LiDAR Data and Aerial Images

Airborne LiDAR data were obtained for the study areas on 30 January 2016 by AAM New Zealand,
with a Q1560 LiDAR sensor (400 kHz, 58◦ field of view) [11]. The sensor achieved five pulses/m2
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on average, which resulted in 35 average returns/m2 and 0.17 m average point spacing. The ground
return, however, was significantly less, with 0.8–1.5 ground returns per m2 in the dense forest stands.
The sensor utilises the 1064 nm wavelength to record intensity. The spatial accuracy was stated
as +/−0.1 m standard error for vertical information and +/− <0.5 m standard error for horizontal
information at a 68% confidence level.

A digital terrain model (DTM), digital surface model (DSM), and ground normalised crown
height model (CHM) were generated in LAStools [83] with the “spike-free” method, according to
Khosravipoura et al. [84]. Outliers that were classified as “noise” were removed. The method uses all
returns to create a triangular irregular network (TIN) from the highest returns downwards. The user
defines a “freeze distance” for the maximum length of the triangle sides, and an “insertion buffer” in a
vertical downward direction, which defines the points that are included in the TIN creation, before the
freezing process starts. All triangles with sides shorter than the freeze distance are preserved and
underlying points are ignored in further steps of the TIN creation for the remaining LiDAR points.
This method prevents the creation of downward spikes. In the final step, the surface model is created
through a linear interpolation of the spike-free TIN. As a rule of thumb, the lengths of the triangle sides
should be around three times the average pulse spacing. We calculated two versions of height models
with freeze distances of 0.6 m and 1 m and a pixel size of 0.25 m, which is larger than the average pulse
spacing of the last returns of 0.23 m for this dataset.

A three-band red-green-blue (RGB) aerial image was acquired during the same flight as the LiDAR
data collection, with a 15 cm pixel resolution. It was delivered in two versions: orthorectified on the
surface model and the terrain model [11]. Another aerial image was obtained by order of the Auckland
Council in May 2017, with three RGB bands at a 7.5 cm resolution and orthorectified on a DTM [12].

2.3. WorldView-2 Image

The WV2 image was captured on 15 March 2017 at 11:33 a.m. (local time) during cloud-free
conditions with 45.7◦ sun elevation and 18.2◦ off-nadir angle. It covers 100 km2 of the Waitakere
Ranges (Figure 2b) and was delivered as standard imagery with nearest neighbour resampling in an
“ortho ready” format. The eight multispectral bands have a resolution of 1.8 m, and the pan channel
features a 0.45 m resolution (Table 1, Figure 3). They reach up to 1043 nm in wavelength, but do not
reach the characteristic spectral pattern of kauri trees in the NIR2 range (Figure 3).

Atmospheric correction of the multispectral bands was carried out with the Fast Line-of-sight
Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI, which incorporates the MODerate
resolution atmospheric TRANsmission (MODTRAN) radiation transfer model [85]. The eight
multispectral bands were pan-sharpened to a 0.5 m resolution with the Gram–Schmidt method [86] using
ENVI’s Spectral Processing Exploitation and Analysis Resource (SPEAR) tools. The Gram–Schmidt
method performs well in retaining spectral information [55,87] and has been used in several studies
with satellite images for the analysis of tree canopies [88,89]. The image was orthorectified using ENVI’s
orthorectification tool for WV2 images with the rational polynomial coefficients (RPCs) provided by
Digital Globe with the image (Figure A1, Appendix A). The orthorectification included a 1 m DEM
(spatial accuracy at 95% confidence: vertical +/−0.2 m, horizontal +/−0.6 m) for the entire area [90].
Remaining deviations were addressed with a shift in the X and Y direction and a georeferencing with a
second-order polynomial transformation based on 1102 ground control points (GCPs) for the three
areas. The mean control point error for the WV2 image in the three study areas was an RMSE of
0.87 m (X 0.57 m, Y 0.66 m). Shadow areas were defined with a threshold value of 300 on a brightness
layer, to match manually identified outer crown shadows while keeping internal crown shadows.
The brightness layer was calculated as the average of the blue, green, red, and NIR1 bands [91].
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Table 1. WorldView-2 image: wavelengths, bandwidths, and spatial resolution [92]. NIR: near-infrared.

Nr. Band Name Centre Wavelength
(nm)

Lower Band Edge
(nm)

Upper Band Edge
(nm)

Spatial Resolution
(m)

Panchromatic 627 447 808 0.45
1 Coastal Blue 427 396 458 1.8
2 Blue 478 442 515 1.8
3 Green 546 506 586 1.8
4 Yellow 608 584 632 1.8
5 Red 659 624 694 1.8
6 Red-Edge 724 699 749 1.8
7 NIR1 833 765 901 1.8
8 NIR2 949 856 1043 1.8

Figure 3. Position of WorldView-2 (WV2) bands and kauri spectra for non-symptomatic, medium,
and dead crowns based on (a) an airborne hyperspectral image (448 spectral bands) and (b) the
pan-sharpened WV2 multispectral bands [7,92].

2.4. Reference Crown Set

The reference crown set with 1089 crowns of kauri and dead/dying trees is based on the crown
locations and attributes acquired during fieldwork in the summer of 2015/16 and complemented and
updated during the summer season of 2016/2017 [7,8] (Table 2). The recorded crown attributes in
the field include basic metrics, such as the stem diameter at breast height, the cardinal crown spread,
and the canopy base height, as well as a detailed description of canopy characteristics, such as an
estimated crown density, coverage in percentage classes [93], and the amount of dead branches [93].
In addition, other signs of stress were recorded such as decolouration of the foliage and the number of
epiphytes. The crowns used in this analysis have a mean diameter of at least 3 m and were stratified
into three growth stages using the mean crown diameter (Figure 1). An outer buffer of 10% of the
mean crown diameter was removed before the analysis to reduce edge effects and effects of a spatial
misalignment between the LiDAR CHM and the WV2 image. After removing the shadow areas,
only crowns with sunlit areas larger than 50% compared to the full crown size were considered for
the analysis.
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Table 2. Distribution of crown size classes according to their mean diameter per stress symptom level
for the refined 7-step reference system with symptom levels from 1 = non-symptomatic to 5 = dead.

Size Class Crown
Diameter Stress Level Total

Level 1 Level 1.5 Level 2 Level 2.5 Level 3 Level 4 Level 5

Very Small 3–4 m 35 39 29 24 25 12 30 194

Small 4–4.8 m 15 21 18 14 18 7 24 117

Medium 4.8–12.2 m 20 117 126 87 61 10 63 484

Large >12.2 m 29 144 78 26 3 14 294

Total 70 206 317 203 130 32 131 1089

2.5. Reference Values for Stress Assessment

An overall canopy score for stress symptoms was assessed for each crown at five levels, from 1
for non-symptomatic dense foliage, to 5 for “dead tree”. This score was based on the fieldwork and
the assessment of aerial images, according to the method described by Meiforth et al. [8]. For a more
detailed evaluation of the first stress symptoms, the stress levels 1 to 2 were refined in half-steps
(Figure 4) for this study. Level 1 describes crowns with non-symptomatic dense green foliage, which is
mainly found in small and some medium crowns. Level 1.5 applies to crowns with still green,
but more open foliage, with exposed gaps and single patches of visible branch material from an aerial
viewpoint. This level is typically found in non-symptomatic medium and larger crowns. The stress
level 2 features visible smaller branches over the full crown extent and the partial yellowing of foliage.
Further increasing gaps and visible small to medium bare branches are the main visible characteristics
of level 2.5 in the aerial images, as well as a more intense yellowing in some trees. Level 3 features large
branches that become visible as linear structures. Level 4 marks a degree of foliage loss that deteriorates
the overall crown architecture and shows a decolouration from yellow-green to brown in the remaining
foliage. Level 5 describes dead crowns and also includes different amounts of photosynthetic active
undergrowth and epiphytes. Figure 5 gives an impression of the crown polygons for different forest
stands on the WV2 image with an indication of the crown stress symptom values.

Figure 4. Aerial images from (a) non-symptomatic kauri, several states of decline in kauri crowns (b–f),
to (g) dead trees. All crowns are of a medium size (mean diameter: 4–12.2 m) [12].
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Figure 5. Reference crowns in a high kauri stand (a) and a low stand (b), with symptom values from
1 = non-symptomatic to 5 = dead, on a NIR1 green-blue composite of the WorldView-2 (WV2) image.

To account for the fact that the LiDAR data were acquired in 2016, one season before the WV2 image,
the aerial images from both years were compared, and crowns that showed visible changes or where the
status of the crown could not be identified on both aerial images were removed. Since both summers
were relatively moist, the stress symptoms had not changed as rapidly as in a drought situation.

2.6. Attribute Calculation

A total of 203 LiDAR attributes was calculated for crown stratification and stress detection. For the
stratification of crown sizes, basic crown metrics were derived from the coarser CHM with the 1 m
spike-free threshold, such as the maximum crown height and mean diameter. Figure 6 gives an
overview of the workflow for the attribute calculation.

Figure 6. Workflow diagram for the attribute calculation.
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For stress detection, LiDAR attributes were calculated on both versions of the DSM and CHM
(0.6 m and 1 m spike-free threshold). They describe the shape, crown structure, and texture. The range
of attributes covers height ratios, percentiles and bincentiles, point density and coverage, shape,
roundness, slope, and curvatures, as well as first- and second-order texture measures, such as variance,
range, kurtosis, homogeneity, and skewness (see Table A1, Appendix C). These measures were either
calculated directly on the LiDAR point cloud for the crown polygons or first calculated as rasters
with different kernel sizes. We also calculated statistics from the intensity values of the first returns.
Height cut-offs of 6 and 8 m for calculation of the density and coverage on the LiDAR point cloud for
low and high stands were derived from the field measurements of the canopy base height. Table A1 in
Appendix C gives an overview of the attributes and tools.

Spectral (43) and textural (111) attributes were calculated on the eight pan-sharpened multispectral
WV2 bands with the band math tool in ENVI. The original set of 31 calculated vegetation indices is
based on literature research. They also include the best performing indices from the hyperspectral
analysis presented in Meiforth et al. [8], as far as the wavelengths and bandwidths of the WV2 image
allowed for a calculation. In addition to the indices, bands from a minimum noise fracture (MNF)
transformation, a three-band Munsell hue, saturation, and value transformation (HSVM), and a
brightness layer [91] were calculated. In total, 110 texture rasters were based on the PAN channel
and band 7 with occurrence and co-occurrence matrices on different kernel sizes. For more details,
see Table A2 in Appendix C.

The rasters were scaled to the 1–99 or 2–98 percentiles, according to the histogram distribution,
to remove outliers. The resulting attribute rasters were aggregated on the crown polygons with the
zonal statistic tool in QGIS by the mean crown value and the standard deviation for the spatial attributes.

2.7. Attribute Selection and Regression Approach

The aim of the attribute selection was to identify the subset of attributes with the highest
correlation to the stress symptom levels. First, highly correlated and redundant attributes were
removed. The attributes were clustered according to their origin (WV2, LiDAR height, and LiDAR
intensity) and function as spectral or structural. In each of the clusters, pre-selection was performed
with a Wrapper Subset Evaluator [94,95], which outperformed other subset selection methods, such as
the correlation-based feature selection (Cfs) and classifier subset evaluator. We used the open source
data mining software WEKA, which was developed by Waikato University in New Zealand [96].

The wrapper method evaluates attribute combinations with a specified machine learning algorithm
based on a defined evaluation criterion. We used a random forest (RF) regression in 200 iterations,
with the Pearson correlation coefficient (correlation) as the evaluation measure. The RF regression also
corresponds to the algorithm used for the analysis in this paper and a former analysis of kauri stress
symptoms [8]. RF is a non-parametric algorithm that does not require a certain distribution of data [97].
It can handle a large number of input variables with a high variance and is less sensitive to overfitting,
unless the data is noisy [98]. To avoid overfitting, we tested and pruned the RF tree to a maximal depth
of eight. We tested several search methods and “best first” with bidirectional selection, and a search
termination of eight consecutive non-improving nodes gave the best results. The “best first” method
combines a backward elimination with a forward selection by finding the best attribute subset from
the Wrapper Subset Evaluator. The pre-selected subsets were complemented with other attributes
highly correlated to the stress levels, which were identified with the correlation attribute evaluator in
WEKA. The subset selection of all attributes was repeated with different seed values. Depending on the
number of attributes selected, the resulting attributes from all subsets were again combined, and the
subset selection was repeated with a different range of seed values, in order to reduce the selection to
the most relevant attributes. Figure 7 shows four raster images of the selected attributes.
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Figure 7. Raster datasets of selected attributes with reference crowns marked as red polygons and
labelled stress symptom values. The images show a (a) normalised difference vegetation index (NDVI)
on red and NIR1 bands (NDVI_75), (b) the red-green ratio index (RGRI) on the red and green bands,
(c) a variance raster for a 5 × 5 kernel on a crown height model (CHM), and (d) a CHM with a freeze
distance of 1 m. The grey areas on the spectral rasters (a and b) mark shadows and no-data pixels that
were masked out for the analysis.

The performance of each subset from the final selection round was then tested in an RF regression
with a three-fold split and 1000 repetitions, to define the best performing subset. The correlation,
the root mean squared error (RMSE), and the mean absolute error (MAE) were calculated as evaluation
metrics. When two subsets performed equally well, the one with fewer attributes was chosen.
The importance of each attribute in the final selection was calculated as the average impurity decrease
for the RF regression.

We also tested an approach that was discussed in Meiforth et al. [8], by first identifying the dead
and dying trees in a binary RF classification, before applying a regression for the lower symptom levels.
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3. Results

3.1. Results Objective 1: Test the Performance of WV2 Attributes for Crown-Based Stress Detection in Kauri
Trees and Define the Recommended Minimum Crown Size

A selection of eight WV2 attributes and the maximum crown height resulted in a correlation of
0.85 and an RMSE of 0.59 for all 1089 crowns with a minimum diameter of 3 m (Table 3, Table A3 in
Appendix D). For a minimum crown diameter of 4 m, the correlation increased to 0.89, while the RMSE
decreased to 0.48 (Table 3). Figures 8 and 9 show that mainly the small crown sizes and higher stress
levels caused outliers (error >1).

Table 3. Test of different minimum crown diameters for WV2 attributes for all crowns for seven stress
levels. In addition to eight WV2 attributes, the maximum crown height value was included for crown
stratification. The performance was tested with a random forest (RF) regression with three random
folds in 1000 repetitions and a depth of 8.

Crown Diameter No. of Crowns Correlation RMSE MAE

>3.0 m 1089 0.85 0.59 0.4

>3.5 m 1000 0.86 0.56 0.38

>4.0 m 895 0.89 0.48 0.34

>4.5 m 825 0.9 0.45 0.32

>5.0 m 753 0.9 0.44 0.31

RMSE: root mean squared error, MAE: mean absolute error.

Figure 8. Bar chart showing the absolute numbers of outliers (error >1) in four crown diameter classes
(total 1089) and five aggregated stress levels for a random forest (RF) regression with nine attributes in
a 10-fold cross validation.

Figure 9. A combination of jitter and boxplot diagrams for an RF regression on WV2 attributes for the
seven stress levels, based on (a) crowns with a diameter larger than 3 m (1089) and (b) crowns with a
diameter larger than 4 m (895).
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To analyse the effect of spatial misalignment between the WV2 image and the CHM, we measured
the spatial deviation between both datasets for 100 randomly selected crown polygons (Figure A2,
Appendix B). The test resulted in an overall RMSE of 0.87 m, with 60 crowns having no position
error. After subtracting a buffer of 10% of the mean crown diameter, 90% of the remaining crown
polygons (edited on the CHM) were within 0.5 m of the crown position on the WV2 image. However,
the horizontal inaccuracy of six of the 100 crowns on the WV2 image accounted for more than 20% of
their mean crown diameter (mean crown size 6.3 m, standard deviation 3.0 m).

The boxplot diagram in Figure 10a confirms the overall good match of the model, with a correlation
of 0.89 for all crowns with a diameter larger than 4 m. However, the first quartiles of the half-step
levels (1 to 1.5 and 2 to 2.5) and the levels 3 and 4 overlap, while the first quartiles of the other levels
are more separated. The diagram also shows a slightly non-linear relationship between the actual and
predicted values, especially towards the dead and dying trees. After a rescaling of the value for dead
trees from 5 to 7, a more linear relationship could be established, facilitating the interpretation of the
results (Figure 10b). The correlation for the rescaled value range remained unchanged, while the RMSE
and MAE values increased with the higher value range.

Figure 10. Boxplot for the predicted and actual values from an RF regression on the seven-level
reference scheme for crowns with a diameter larger than 4 m (total 895). Figure (a) shows the basic scale
from 1 to 5 and figure (b) presents the results after rescaling the value 5 for “dead” tree crowns to 7.

The most important attributes are a combination of red/NIR1 bands in a normalised vegetation
index (NDVI_75), followed by a ratio of the red and green bands (red-green ratio index (RGRI)) and
the standard deviation of the first band of an MNF transformation (Table 4). For mean crown values of
a green NDVI (NDVIg) with red-edge and green bands, the red-edge band and a brightness layer were
also selected. Further attributes include the mean value of a seven-pixel kernel of the PAN band and
the range of a three-pixel kernel on the NIR1 band. Figure 11 illustrates the predicted versus the actual
stress values and their match with an NDVI_75 raster.
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Table 4. Selection of WV2 attributes and their importance for a description of the seven-level reference
scheme. The maximum crown height value was added for crown stratification. The attribute
importance (imp.) for the RF regression was calculated as the average impurity decrease and converted
to the percentage.

Abbr. Att.
Imp. % Correlation Crown

Statistic Description Algorithm Reference

NDVI 32.5 −0.83 mean Normalized Difference
Vegetation Index (b7 − b5)/(b7 + b5) 1 [99,100]

RGRI 25.0 0.79 mean Red-Green Ratio Index b5/b3 1 [101]

MNF1 12.6 0.68 st. dev.
1st band of a minimum

noise fraction (MNF)
transformation

[102]

NDVIg 9.2 0.70 mean green NDVI (b6 − b3)/(b6 + b3)) 1 [103]

b7O3rg 4.3 −0.05 mean range of a 3 × 3 kernel
of band 7 [104]

Bright 3.9 −0.14 mean brightness band (b2 + b3 + b5 + b7)/4 1 [91]

b06 3.7 −0.15 mean mean of band 6
(red-edge)

PO7mn 2.8 −0.21 st. dev.
mean of a 7 × 7 kernel
of the panchromatic

(PAN) band
[104]

CHM 5.8 −0.18 max
maximum height on a

CHM raster (1 m freeze
distance)

[84]

1 The variables marked with “b” indicate the band numbers of the WV2 image according to Table 1.

Figure 11. Maps showing reference crowns in two forest stands in the Cascade area. The labels
indicate the actual stress levels (left number) and the predicted stress levels (right number) on an NDVI
background raster (bands 5, 7). The predicted values are based on the seven-level reference scheme
with WV2 attributes according to Table 4.

An M5P and linear regression resulted in slightly lower correlations (0.87 and 0.86, respectively)
and higher RMSE values (0.52 and 0.55, respectively) compared to the RF regression (correlation of
0.89, RMSE of 0.48) for the seven stress levels and crowns with a diameter larger than 4 m.
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A comparison with a reference scheme on the basic five stress levels showed a lower performance
(correlation of 0.88, RMSE of 0.55) than the seven-level reference scheme with a more detailed assessment
of the first symptoms (Tables 5 and A3 in Appendix D). While the NDVIg and red-edge band were not
selected for the five stress levels, a ratio of the two NIR bands (modified normalised difference water
index (mNDWI)) improved the performance.

Table 5. Performance of an RF regression for the basic five-level reference scheme and the refined
reference scheme with seven stress levels based on WV2 attributes for crowns with a diameter larger
than 4 m. The correlation (corr.), root mean squared error (RMSE), and mean absolute error (MAE) were
calculated for an RF regression (depth 8, 200 iterations) in a three-fold random split with 1000 repetitions.

No Att. Corr. RMSE MAE

5 level, basic reference scheme
(1–2–3–4–5) 8 0.88 0.55 0.38

7 level, refined reference scheme
(1–1.5–2–2.5–3–4–5) 9 0.89 0.48 0.34

3.2. Results Objective 2: Classification to Identify Dead and Dying Trees

Dying and dead trees (level 4 and 5) with a diameter larger than 4 m could be identified in an RF
classification based on WV2 attributes, with a user’s accuracy of 84.3% and a producer’s accuracy of
88.7% (Table 6). The remaining stress levels from 1 (non-symptomatic) to 3 (medium symptoms) could
be described for crowns larger than 4 m, with an RMSE value of 0.37 (MAE of 0.28, correlation of 0.72).
The main differences in the attribute selection to the full symptom range are the higher importance of
the NDVIg with red-edge and green bands and the selection of the mNDWI on the NIR bands for the
first stress levels from 1 to 3 (Table A3 in Appendix D).

Table 6. Confusion matrix for an RF classification to identify dead and dying trees (level 4 and 5) with
WV2 and LiDAR attributes for crowns with a diameter larger than 4 m (895 total).

Classified as –> Level 1–3 Level 4, 5 Total User’s Accuracy

Level 1–3 761 13 774 98.3

Level 4, 5 19 102 121 84.3

Total 780 115 895

Producer’s Accuracy 97.6 88.7 96.4

3.3. Results Objective 3: Test the Performance of LiDAR Attributes for Stress Detection

The combination with LiDAR attributes improved the stress detection compared to only WV2
attributes for all tested reference schemes (Table 7). For crowns larger than 4 m and seven stress levels,
the correlation increased from 0.89 to 0.92 and the RMSE was lowered from 0.49 to 0.43. While the
removal of very small crowns under 4 m diameter notably improved the correlation and RMSE for
WV2 attributes, the correlation for only LiDAR attributes did not change and the RMSE only improved
slightly (Figure 12).

The most important attributes for a combination of LiDAR and WV2 data (Table 8) are the NDVI
on the red/NIR1 bands, followed by the ratio between the maximum height and the 50th percentile
crown height (R_max_P50) and the average intensity values. The standard deviation of the first MNF
band was also selected with a high importance amongst other spatial attributes for crowns with a
diameter larger than 4 m.

Both the identification of dead and dying trees (Table 9, Table A4 in Appendix E), as well as the
detection of first stress symptoms (level 1 to 3), improved with additional LiDAR attributes. In the
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attribute selection for the first stress symptom, the intensity values had a higher importance, while the
R_max_P50 and brightness attributes were not selected (Table 8).

Table 7. Performance of an RF regression for the first stress symptoms and seven stress levels with and
without LiDAR attributes. The resulting values are based on individual attribute selections for each
setup and crowns with a diameter larger than 4 m (total 895 crowns).

No
Crowns WV2 Only 1 WV2 and LiDAR

No Att. Corr. 2 RMSE MAE No Att. Corr. 2 RMSE MAE

7 level reference scheme
(1–1.5–2–2.5–3–4–5) 895 9 0.89 0.48 0.34 11 0.92 0.43 0.31

First symptoms
(1–1.5–2–2.5–3) 774 9 0.72 0.37 0.28 6 0.76 0.34 0.26

1 The attributes include the maximum crown height value based on the LiDAR CHM for stratification. 2 Correlation.

Figure 12. Correlations (a) and RMSE (b) of WV2 and LiDAR attributes for an RF regression on seven
stress symptom levels. The performance was tested for crowns with a mean diameter larger than 3 m
(light colour, total 1089) and larger than 4 m (dark colour, total 895). The RF regression was carried out
in 1000 repetitions for a random three-fold split with a tree depth of eight.

Table 8. Selected attributes for a stress analysis with WV2 and LiDAR attributes for seven stress levels
and the first symptoms of stress (level 1 to 3) for crowns with a diameter larger than 4 m. The attribute
importance in % is based on an RF regression in a 10-fold cross validation.

Crown
Statistics First Symptoms 7-Level Symptoms Description Source

Imp. % Corr. Imp. % Corr.

NDVI75 mean 31.8 −0.67 33.3 −0.83 normalized difference vegetation index
(b7 −b5)/(b7 + b5) 2 [99,100]

R_max_P50 21.5 0.61 ratio maximum height and 50th percentile [83]

intensity mean 26.9 −0.60 16.8 −0.71 intensity values [83]

MNF_b1 st. dev. 10.1 0.38 14.1 0.68 1st band of an MNF transformation [102,105]

Pan_k7mn st. dev. 7.8 −0.22 mean of a 7 × 7 kernel on the PAN band [104]

Cg1Cor7 mean 13.3 −0.35 4.5 −0.43 correlation on a 7 × 7 kernel CHM 1 [104]

CHM max. 10.0 0.14 3.8 −0.18 maximum crown height from a CHM [83]

b7_k3Rg mean 3.5 −0.05 range of a 3 × 3 kernel on band 7 [104]

Bright mean 2.4 −0.14 brightness layer (b2 + b3 + b5 + b7)/4 2 [91]
1 The CHM was calculated with a 1 m spike-free threshold according to the method of Khosravipoura [84].
2 The variables marked with “b” indicate the band numbers of the WV2 image according to Table 1.
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Table 9. Accuracies (Acc.) for an RF classification to identify dead and dying trees (level 4 and 5) with
WV2 and LiDAR attributes for crowns with a diameter larger than 3 m (1089 total) and larger than 4 m
(895 total). The RF classifier was set up with 1000 iterations in a 10-fold cross-validation.

Attribute Type Min. Crown Diameter No. Attributes Overall Accuracy Level 4 and 5
(Dying and Dead Trees)

User’s Acc. Prod. Acc.

WV2 3 m 5 94.9 73.6 90.2
WV2 and LiDAR 3 m 7 96.7 87.1 90.4

WV2 4 m 5 96.4 84.3 88.7
WV2 & LiDAR 4 m 6 97.2 86.0 92.9

4. Discussion

The high overall performance of WV2 attributes with a correlation of 0.89 (RMSE of 0.48, MAE of
0.34) for the seven stress symptom levels and crowns with a diameter larger than 4 m diameter showed
that WV2 data is well-suited to describe stress symptoms in kauri canopies. The seven-level reference
scheme includes a refined description of the first stress symptoms, which is important for an early
identification of potentially infected stands.

4.1. Discussion: Minimum Crown Size, Spatial Accuracy and Stratified Approach

The high number of outliers in crowns with a diameter smaller than 4 m, especially for dead and
dying trees, is an indicator that the multispectral resolution of 1.8 m in the WV2 image causes mixed
pixels in small crowns and is too coarse to detect the small bare top branch of severely affected small
crowns. For the use of only WV2 attributes on the full range of stress symptoms, a minimum crown
size of at least 4 m is recommended, which improves the correlation from 0.85 to 0.89 and the RMSE
from 0.59 to 0.48. Stands with kauri of smaller crown sizes should be pre-segmented and analysed in
homogenous stand units.

Spatial misalignment between the WV2 image and the CHM also caused errors. This cannot be
completely avoided, especially in steep terrain with high crown heights [106]. The subtraction of an
outer buffer of 10% of the mean crown diameter helped to reduce the effects of spatial inaccuracy.
However, still six of the 100 tested crown polygons showed displacements of more than 20% of the
remaining mean crown diameter. To improve the spatial accuracy, the use of a DSM instead of a DEM
should be tested for orthorectification. The different appearance of kauri growth stages requires a
stratified approach [8]. If only WV2 data are available for regular monitoring, the inclusion of the
maximum crown height derived from LiDAR data of former years allows such a stratification.

4.2. Discussion: Attribute Performance

According to the findings presented in Meiforth et al. [8], an NDVI with a red and NIR1 band
combination (NDVI_75) and a red-green ratio (RGRI) are the most important attributes for stress
detection in the full seven-level symptom range (32.5% and 25% importance, respectively), including
dead and dying trees. While the NDVI_75 saturates for high chlorophyll and biomass levels, it is able
to capture the loss of photosynthetic activity and structural changes caused by foliage loss [99,100].
The also selected RGRI combination, the green NDVI (9.2% importance), and the mean of the red-edge
band (3.7%) are more sensitive to pigment changes [103,107]. The standard deviation of the first band of
an MNF transformation (12.6% importance) and the range of the NIR1 band (4.3%) provide information
on structural and textural crown characteristics, which are influenced by a higher number of large
bare branches and internal shadows. The same features are also captured by a selected brightness
layer (3.9%). These attributes have a higher importance in a five-level reference scheme with a greater
emphasis on advanced stress levels (Table A3, Appendix D).

For the detection of the first stress symptoms in trees with a still intact crown architecture (level 1
to 3), the green NDVI has higher importance. It detects the blue shift of the red-edge point caused by a
decline in photosynthetic activity and changes in the foliage pigment concentrations [107]. A modified
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normalised difference water index (mNDWI) for the NIR1 and NIR2 bands was also selected for the
first stress levels, and is sensitive to a reduction of leaf-cell wall scattering and reduced canopy water
caused by foliage loss [108].

4.3. Discussion: Dealing with Non-Linearity: Rescaling and a Two-Step Approach

While the RF regression is well suited to handle non-linear relationships, the boxplot in Figure 10a
shows that the medians of the resulting values for dead and dying crowns are slightly lower than the
actual values. This effect of non-linearity is mainly caused by the more extreme reflectance values of
dead branches and shadows in the later stages of decline.

A rescaling of the reference values for the dead crowns (i.e., subdividing the range for this crown
state in several levels of severity) suggested by Meiforth et al. 2020 [8] leads to a better match between
the medians of the results compared to the actual values (Figure 10b), while the overall correlation
coefficients remain unchanged. Merging the mapped severity classes again after the prediction
process allows to maintain the original value range from 1 (non-symptomatic) to 5 (dead), which also
corresponds to the field reference scheme used by the Auckland Council. A change detection however
should be based on the original resulting values to utilise the detailed information in the continuous
output range of the regression analysis.

The test of a two-step approach showed that the identification of dead and dying crowns in
a binary RF classification requires additional LiDAR data for a stress description of crown sizes
smaller than 4 m. If only WV2 attributes are available, the minimum crown size should be 4 m mean
diameter. Although, even for crowns larger than 4 m, ca. 15% of the dead and dying crowns were still
misclassified as less symptomatic. The remaining lower stress levels from 1 to 3 can be described in
a regression with the pre-selected attribute sets with an RMSE of 0.37. However, the mistakes from
prior classification need to be added to these results, which makes the interpretation more complicated,
especially when this method is used in a change detection. For an easier interpretation, we recommend
using only a regression approach.

4.4. Discussion: Performance of Additional LiDAR Attributes for Stress Detection

The improved performance with additional LiDAR attributes for stress detection can be explained
by the additional 3D information in higher spatial resolution, the high spatial accuracy and the spectral
information in the intensity values. Moreover, there is no misalignment with the crown polygons,
since the reference crowns were manually edited on the LiDAR data.

The ratio between the maximum crown height and 50th percentile height has high importance for
reference schemes that include dead and dying crowns, but it was not selected to assess the first stress
symptoms. The advanced loss of foliage is characterised by a lower 50th percentile height of the LiDAR
returns, while the maximum height in the form of branches still remains high, even in the later stress
stages, caused by the remaining (dead) branches. Further selected LiDAR height attributes describe
textural characteristics, as an indicator of foliage loss that exposes gaps and bare branches, such as
the variance, standard deviation, and cross curvature in CHM and DSM models. The performance of
these attributes depends on an accurate spatial alignment, since their values increase on the edge of
the crowns (Figure 7c). For the time being, the acquisition of airborne LiDAR data is still too expensive
for regular monitoring of stress symptoms. However, the inclusion of the maximum crown height
enables a size stratification and improves the performance of the stress detection with the WV2 data.
For the stratification, the crown height can also be derived from older LiDAR data.

4.5. Discussion: Recommendations for Further Studies

The resulting stress symptom values of the remote sensing analysis need to be interpreted to
translate them into health categories by local experts considering the growth stage, the stand situation,
the environmental conditions, and other possible causes of stress. Spatiotemporal dynamics of stress
symptoms over several years analysed in change detections might also help to distinguish between
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PA infection and other causes of stress [16,109,110]. We also recommend testing the use of the
original, not pan-sharpened multispectral bands, especially for stress detection in medium and larger
crown sizes.

Further studies should investigate crown and stand segmentation in kauri forests based on LiDAR
data. Zörner et al. [111] developed a method for large tree detection in native New Zealand forest in
the Wellington region. Another promising method for canopy segmentation was developed by Wagner
et al. [65] in an Atlantic rainforest based on a U-net convolutional network.

A stand-based analysis of stress symptoms with satellite data requires a better understanding
of spectral stress responses in associated tree species. Meiforth et al. [7] showed that the effect of
waxy, shiny foliage surface in kahikatea, wooden seed capsules in kānuka, and the influence of older
needle cohorts in perennial conifers like rimu can lead to confusion with dead and dying crowns [7].
A spectral unmixing of forest stands with known spectra of kauri and other tree species might also
help with the interpretation of stress assessment in mixed forest stands [33,112,113].

We also recommend testing the use of other datasets, which offer more cost-efficient options,
such as optical height models derived from Stereo-VHR, instead of LiDAR [114]. Additionally,
the newly launched constellations of micro-satellites could be tested, which offer opportunities for
producing very-high spatial resolution data at a relatively low cost [115].

5. Conclusions

This study presents a method for detecting stress symptoms in the canopies of New Zealand
kauri trees with LiDAR and WV2 data. A unique characteristic of this study is the large representative
reference dataset with 1089 manually edited crowns. It covers the full range of stress symptoms and
size classes of kauri in different stand situations. A reference scheme for stress symptoms in five levels
was refined to seven levels with a higher differentiation of the first stages of stress. A crown diameter
of 4 m was determined as the recommended minimum object size for stress detection, to avoid higher
numbers of outliers and mixed pixels for smaller crown sizes. The removal of a 10% outer crown
buffer helped to reduce edge effects and spatial misalignment. A selection of eight WV2 attributes in
combination with the maximum crown height resulted in a correlation of 0.89 (RMSE of 0.48, MAE of
0.34) in an RF regression for crown sizes larger than 4 m. The performance could be further improved
by adding LiDAR attributes (correlation of 0.92, RMSE of 0.43). For cost-efficient regular monitoring
of stress symptoms, we recommend the use of WV2 satellite data on pre-segmented crowns with a
diameter larger than 4 m and homogenous stand units for smaller crown sizes. The maximum crown
height should be included in the analysis to allow for stratification. With the newly available LiDAR
data for crown segmentation over the main distribution area of natural kauri forests, the results of this
study have important implications for cost-efficient large area monitoring of stress symptoms in New
Zealand’s kauri forests.
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Appendix A. Illustrations for the Orthorectification of the WV2 Image

Figure A1. Different steps in the orthorectification illustrated with the PAN channel of the WorldView-2
image, for a forest section in the Cascade area. The red polygons mark crowns of kauri and dead/dying
trees that were used in the analysis. The 10% buffer, which was removed for the analysis, is marked
with a stippled line. The orange polygons mark crowns from other species and kauri smaller than 3 m
diameter that were not used in this study.
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Appendix B. Spatial offset of crown polygons to WV2 Image

Figure A2. Spatial offset of crown polygons, edited on the LiDAR CHM, to the WorldView-2 image,
measured for 100 randomly selected crowns. The offset is marked in classes with (a) the distance in
percent from the crown diameter and (b) the absolute distance in meter. The blue values mark the offset
for the full crown polygons, and the green values mark the offset for the inner buffer that was used in
the analysis, after a 10% outer buffer was removed.

Appendix C. LiDAR and WorldView-2 Attributes

Table A1. LiDAR attributes (203 total).

Total Based on Attributes Software/Tools

14 Intensity values Avg, qav, std, ske, kur
Percentiles (01, 05, 10, 25, 50, 75, 90, 95, 99) LAStools, LAScanopy

88 DSM 1 Stdev, var, rang, crosc, longc, mnc, mxc, slp, avgdev, kur, skw, on
3 × 3, 5 × 5, 7 × 7 kernel size

QGIS zonal statistic,
GRASS: r.param.scale

55 CHM 1
Mean, max, st. dev., rang, med, maj, var, vart, prc conv, sa, var,

ent, asm, con, cor,
idm, con, cor> all attributes were calculated on 3, 5, 7 kernel sizes

QGIS zonal statistic
GRASS: r.statistics,

r.texture, r.slope.aspect

13 Crown polygon

Ratio mdm/height;
Ratio of max height with 95th, 75th, and 50th percentiles and

average height of outer crown edge;
difference of max height with 75 and 50 percentile, peak density,
height, mdm, shp area and roundness (shp area/lengths), average

height of outer crown edge

ArcGIS tools

33 LiDAR point cloud
Std, ske, kur, cov, dns (cut value 6 m and 8 m), min, max, avg, avg
1st return, percentiles (01, 05, 10, 25, 50, 75, 90, 95, 99), bincentiles

(10, 20, 30, 40, 50, 60, 70, 80, 90)

LAStools
LAScanopy

1 The digital surface model (DSM) and the crown height model (CHM) were calculated with LAStools as spike-free
rasters, according to Khosravipoura et al. [84], in two versions with a “freeze distance” of 60 and 100 cm.



Remote Sens. 2020, 12, 1906 22 of 30

Table A2. Attributes calculated on the WorldView-2 image (154 total).

Total Attributes 2 Crown
Statistics Software/Tools

8 multispectral bands 1–8 mean ENVI

1 MNF transformation (1st band) st. dev. ENVI

4 HSVM transformation (3 bands), brightness layer (1 band) mean ENVI

31 31 vegetation indices mean ENVI

110 textures on PAN channel and band 7 (NIR1) with 3 × 3, 5 × 5, and
7 × 7 kernels: rang, mean, var, ent, skw, hom, con, cor, sm, dis 2

mean
st. dev. ENVI

2 Abbreviations for Tables A1 and A2.

asm angular second m

avg average
avgdev average deviation

con contrast
cor correlation
cov coverage

crosc cross-sectional curvature
dis dissimilarity
dns density
ent entropy

hom homogeneity
idm inverse difference
kur kurtosis

longc longitudinal curvature
maj majority

mdm mean diameter
med median
mnc mean curvature
mxc max curvature

planc plan curvature
prc conv percent convex

profc profile curvature
qav quadratic average
rang range
skw skewness
slp slope
sm second moment

st. dev. standard deviation
var variance
vart variety
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Appendix D. WV2 Attribute Importance for the Basic and Refined Symptom Levels

Table A3. Selected attributes and attribute importance in percent for different stress symptom references (basic 5 levels 1, first symptoms 2, refined 7 levels 3) based on
crowns with a diameter larger than 4 m for WV2 attributes. The attribute importance for an RF regression was calculated as the average impurity decrease and
converted to percentages.

Abbrev. Band 5 Level First 7 Level Crown Statistic Description Algorithm Ref.
Imp. % Imp. % Imp. %

NDVI 5, 7 32.2 26.7 31.5 mean NDVI (b7 − b5)/(b7 + b5) 4 [99,100]

RGRI 3, 5 29.5 20.3 24.2 mean Red-Green Ratio Index b5/b3 4 [101]

MNF1 all 15.2 9.9 12.3 st. dev. 1st band of an MNF transformation [102]

NDVIg 3, 6 13.1 9 mean Green NDVI (b6 − b3)/(b6 + b3)) 4 [103]

mNDWI 7, 8 5.0 5.7 mean modified Normalized Difference Water Index (b7 − b8)/(b7 + b8) 4 [108]

Bright 2, 3, 5, 7 4.7 3.8 mean brightness band (b2 + b3 + b5 + b7)/4 4 [91]

b6 6 3.6 mean mean of band 6

b7_3krg 7 7.4 4.2 mean range of a 3 × 3 kernel on band 7 [104]

b7_5krg 7 8.8 st. dev. range of a 5 × 5 kernel on band 7 [104]

Pn_k7sm PAN 3.7 mean second moment of a 3 × 3 kernel on the PAN band [104]

Pn_k7mn PAN 3.6 8.0 2.7 st. dev. mean of a 7 × 7 kernel on the PAN band [104]

CHM 6.2 5.7 max maximum height on CHM raster
(spike-free threshold 1 m) [84]

1 Five-level value range (1–2–3–4–5); 2 First symptoms value range (1–1.5–2–2.5–3); 3 Seven level value range (1–1.5–2–2.5–3–4–5); 4 The variables marked with “b” indicate the band
numbers of the WV2 image, according to Table 1.
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Appendix E. WV2 and LiDAR Attributes to Identify Dead and Dying Trees

Table A4. Selected attributes to identify dead and dying trees for all crown sizes (total 1089) with a random forest classifier based on WV2 attributes only (WV2) and in
combination with LiDAR attributes (WV2 and LiDAR). The attribute importance (imp.)was calculated as the average impurity decrease.

Abbrev. Crown Description WV2 WV2 and LiDAR Ref.

Statistic 1089 Crowns
>3 m

895 Crowns
>4 m

1089 Crowns
>3 m

895 Crowns
>4 m

imp. % corr. imp. % corr. imp. % corr. imp. % corr.

NDVI_75 mean NDVI (b7 − b5)/(b7 + b5) 1 25.8 0.75 15.7 0.75 [99,100]

MCARI1 mean Modified Chlorophyll Absorption in Reflectance Index
11.2*(2.5*[b7-b5]-1.3*[b7-b3]) 1 16.2 0.39 [116]

NDVIg mean green NDVI (b6 − b3)/(b6 + b3)) 1 26.7 0.55 [103]

RDVI mean Renormalized Difference Vegetation Index (b7−b5) /sqrt(b7+b5) 1 22.2 0.51 [116,117]

ARVI mean atmospherically resistant vegetation index
(b7) - (2*b5-b2)/(b7) + (2*b5-b2) 1 18.5 0.70 16.5 0.70 [118]

MNF_1st st. dev. 1st band of an MNF transformation 15.5 0.65 [102]

Pan_k3sk mean skewness of a 3 × 3 kernel on the PAN band 17.2 0.01 [104]

Bright mean brightness band (b2 + b3 + b5 + b7)/4 1 20.2 0.06 [91]

Pan_k3hm mean homogeneity of a 3 × 3 kernel on the PAN band 21.4 0.10 [104]

Pan_k5Cr mean correlation of a 5 × 5 kernel on the PAN band 15.7 0.03 [104]

b7_k3rg mean range of a 3 × 3 kernel on the band 7 15.5 0.02 16.9 0.07 18.2 0.02 16.4 0.07 [104]

intensity skewness LiDAR intensity value 14.7 0.55 12.1 0.52 [83]

D6_k5var variance variance of a 5 × 5 kernel on the DSM (spike-free threshold 0.6 m) 13.8 0.17 [104]

Cg6_k5var median variance of a 5 × 5 kernel on the CHM (spike-free threshold 0.6 m) 12.3 0.51 [104]

RatDMHght ratio between the mean diameter and maximum height 13.6 0.00

R_max_P50 ratio between the maximum height and the 50th percentile 11.4 0.58

CHM maximum maximum height on CHM raster (spike-free threshold 1 m) 11.8 0.28 11.8 0.27 [84]
1 The variables marked with “b” indicate the band numbers of the WV2 image according to Table 1.
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