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Executive summary 

Literature Review: Phytophthora agathidicida inoculum deactivation 

Williams N 

Plant & Food Research: Havelock North, 

June 2020 

 

Disinfectants are key tools in mitigating against the spread of Phytophthora species in 

operational and/or recreational activities within nurseries, forests and natural areas. Protocols 

for disinfection are important components of integrated management aimed at limiting the 

spread of soil and water-borne pathogens through human activity. In the context of kauri 

dieback management, a range of surfaces and substrates need to be considered for disinfection 

including surfaces, equipment and bulk volumes of contaminated water, soil and plant debris. 

The efficacy of any disinfectant is influenced by a range of factors including concentration, 

contact time, chemical/mode of action, and presence of organic matter and the biology of the 

target organism.  

The Ministry for Primary Industry/ Kauri Dieback Programme have requested research on 

“Oospore Deactivation” for P. agathidicida given that tools are needed to deactivate P. 

agathidicida inoculum in human-mediated pathways. This project specifically requested 

investigation into the limitations and key considerations of using chlorine, steriGENE, 

methylated spirits, steam and boiling for disinfecting surfaces and water. Existing published 

research and grey literature (e.g. unpublished or published in non-commercial form) on the use 

of these are reviewed with reference to P. agathidicida. 

Each of the disinfection methods has the potential for use in the management of P. agathidicida. 

Despite considerable amounts of work investigating the response of Phytophthora pathogens to 

various disinfection protocols, the specific conditions in which such methods are used in 

practice remain largely untested. In each case, a key consideration must be the target material 

being treated. Such information is critical in ensuring that the appropriate approach is taken to 

disinfection for the material being treated. The establishment of treatment dose and response 

curves for natural inoculum of P. agathidicida across key disinfection treatments will enable 

management prescriptions to be established for a range of applications without the need for 

repeated optimisation for specific treatment scenarios. 

The potential environmental impacts and risks of using some chemicals also needs careful 

consideration for their routine application within natural ecosystems. In the case of chlorine and 

SteriGENE consideration should be used to minimise the volumes being applied and potentially 

discharged into sensitive natural ecosystems.  

For further information please contact: 

Nari Williams 

Plant & Food Research Hawke’s Bay 

Private Bag 1401 

Havelock North 4157 

NEW ZEALAND 

Tel: +64 6 975 8880 

DDI: +64 6 975 8977 

Email: Nari.williams@plantandfood.co.nz 
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1 Phytophthora agathidicida inoculum 

deactivation  

Disinfectants are key tools in mitigating against the spread of Phytophthora species in 

operational and/or recreational activities within nurseries, forests and natural areas. Protocols 

for disinfection are important components of integrated management aimed at limiting the 

spread of soil and water-borne pathogens through human mediated activity (Colquhoun and 

Hardy 2000; Gehr et al. 2003; Tomasino 2005; Cheah et al. 2009; Fichtner et al. 2009).  

In the context of kauri dieback management, a range of surfaces and substrates need to be 

considered for disinfection including surfaces, equipment and bulk volumes of contaminated 

water, soil and plant debris (James et al. 2012; Scarlett et al. 2016; Gómez-Gálvez et al. 2018). 

The efficacy of any disinfectant is influenced by a range of factors including concentration, 

contact time, chemical/mode of action, presence of organic matter and the biology of the target 

organism (Best et al. 1990).  

In the case of Phytophthora pathogens, disinfection needs to consider the mode of action, 

longevity and risk associated with key inoculum sources/substrates in which the pathogen lives 

and persists on surfaces or within the plant, soil or water substrates of concern (Russell 1983; 

Hong et al. 2003; James et al. 2012). For Phytophthora agathidicida, causal agent of kauri 

dieback, chlorine, steriGENE, methylated spirits and steam and boiling have all been identified 

as feasible disinfectants in various situations (Bellgard et al. 2011a). The Ministry for Primary 

Industry/ Kauri Dieback Programme have requested research on “Oospore Deactivation” for  

P. agathidicida given that tools are needed to deactivate P. agathidicida inoculum in human-

mediated pathways (Williams and Arnet 2020). This project specifically requested investigation 

into the limitations and key considerations of using chlorine, steriGENE, methylated spirits, 

steam and boiling for disinfecting surfaces and water. Existing published research and grey 

literature (e.g. unpublished or published in non-commercial form) on the use of these are 

reviewed here with reference to P. agathidicida. 

 

2 Chlorine 

Chlorine is a commonly used to disinfect in a broad range of applications including recycled 

irrigation water (Hong et al. 2003; Cayanan et al. 2008), surface water (Lewis Ivey and Miller 

2013) and on surfaces. Chlorine is an effective disinfectant against a range of plant pathogens 

including fungi and oomycetes (Datnoff et al. 1987; Hong et al. 2003; Scarlett et al. 2016; Lee et 

al. 2019). Chlorine can be used as a disinfectant in a range of formulations, including industrial 

use of chlorine gas (Cl2) and chlorine dioxide (ClO2) for disinfecting bulk water or as liquid 

bleach (sodium hypochlorite, NaOCl) commonly used in domestic applications (Lewis Ivey and 

Miller 2013). Bleach formulations inhibit the growth of Phytophthora mycelia and kill zoospores 

on contact (Hong et al. 2003; Cayanan et al. 2009; Lee et al. 2019), however chlorine sensitivity 

can differ with pathogen species and type of propagules of the same pathogens (Hong et al. 

2003).  
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Hong et al. (2003) exposed zoospores of seven species and eight isolates of Phytophthora to 

free available chlorine at 0.25, 0.5, 1.0, 2.0, and 4.0 mg/L for 2 min with none surviving at 

concentrations of above 2 mg/L free chlorine. In the same study they also exposed zoospores, 

mycelial fragments and culture plugs of Phytophthora nicotianae to chlorine concentrations 

ranging from 0.25 to 8.0 mg/L for periods ranging up to 8 min in which it was shown that  

P. nicotianae mycelial plugs were able to survive and produce sporangia at concentrations of 

0.77 mg/L active chlorine or lower. Zoospore mortality was observed to increase with chlorine 

concentration from 0.25 to 1 mg/L irrespective of contact time with the shortest period measured 

being 15 s. Mycelial fragments were found to be more recalcitrant but also showed increased 

mortality with time at concentrations above 0.5 mg/L (Hong et al. 2003). In nursery applications, 

Phytophthora species were recovered in irrigation water containing up to 0.77 mg/L of active 

chlorine from which the authors recommended this as a minimum concentration for chlorination 

protocols within nurseries (Hong et al. 2003) . 

Bellgard et al. (2011) showed that a 5% solution of bleach (Janola) was lethal to P. agathidicida 

zoospores, significantly reduced oospore viability and completely suppressed mycelial growth 

beyond 8 days exposure. These observations on P. agathidicida were consistent with those of 

Hong et al. (2011) showing that mycelium is less sensitive to chlorine treatment than zoospores. 

Both studies highlight the importance of considering the propagule being targeted by 

disinfection and the need to consider the substrate it is contained within. Janola was found to be 

effective in suppressing P. agathidicida in soil and in surface application on contaminated 

footwear (Bellgard et al. 2011b). While Bellgard et al., (2011a) tested Janola at an active 

concentration of 5%, standard working concentrations range from 1–5% depending on 

application and warrant further investigation.  

While each of the studies discussed in the previous paragraph considered the treatment of 

material over time, neither considered investigated the period of exposure of the disinfectant 

solution and associated degradation of chlorine over time. This is an important consideration as 

bleach/chlorine will become less effective over time with exposure to the air, soil and organic 

material (Cayanan et al. 2009) . In water, the active constituents of chlorination are chlorine 

(Cl2), hypochlorous acid (HClO) and hypochlorite anion (ClO─). As a contained liquid, these 

remain in equilibrium. However, upon exposure to air the degradation kinetics are driven by the 

loss of chlorine gas and the pH of the solution (Haskell et al. 2011). Ultraviolet radiation 

accelerates the dechlorination of water stored in the light. In large industrial applications the 

concentration of active chlorine within water is managed through chlorine injection, however in 

more direct applications chlorine solutions need to be change periodically. Little is known about 

the rate of degradation of chlorine solutions and efficacy of Phytophthora species disinfection in 

field applications. 

Bleach has numerous benefits as a disinfectant as it is readily available, cost effective, can 

easily be stored and transported (Cayanan et al. 2009). It is often available as a concentrate or 

ready to use formulations where dosage is generally simple for direct use and application from 

small to large scale (Scarlett et al. 2016; Lee et al. 2019). Chlorination is often the most 

economical method of large volume water decontamination. High volume water treatment is 

most commonly applied with chlorine gas, but lower volumes can be treated with calcium or 

sodium hypochlorite. Chlorine is very effective in eliminating the risk of Phytophthora species 

contamination in water containing minimal organic and soil particulates where dosage is 

controlled (Hong et al. 2003). This means that chlorinated municipal water supplies are not a 

risk for the spread of Phytophthora pathogens, but the same is not necessarily true for unfiltered 
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surface water in which the presence of soil and organic particulates contribute to the loss of 

chlorine from solutions (Ivey and Miller 2013; Loyd et al. 2014).  

There are several human health considerations needed for the practical use of chlorine based 

disinfectants. As a bleaching agent sodium hypochlorite usually contains between 1–5% sodium 

hypochlorite, has a pH of around 11 and is a skin, eye and respiratory irritant. Higher 

concentrates are commercially available; these contain 10–15% sodium hypochlorite, have a 

pH of 13, will burn the skin and eyes, is corrosive and can produce chlorine volatiles. Therefore, 

safety measures need to be taken when using chlorine based disinfectants to protect workers 

and the environment. Sodium hypochlorite is unstable and the active chlorine evaporates from 

solutions, disintegrates with heat or when in contact with acids, sunlight, certain metals and 

organic matter (Hong et al. 2003; Cayanan et al. 2009; Scarlett et al. 2016). This means 

chlorine will becoming less effective over time with dose and exposure periods dependent on 

contact time, storage and exposure to organic and metal compounds. As chlorine is a non-

selective disinfectant, care must be taken to minimise environmental harm, especially in natural 

ecosystems. Appropriate application and disposal are essential. 

 

3 SteriGENE 

SteriGENE (TriGene Advanced) is a high level disinfectant used in a range of applications to kill 

viruses, mycobacteria, fungi and bacterial organisms (International 2020). It is used routinely in 

veterinary, health, commercial and agricultural settings to manage pathogen contamination 

(International 2020). SteriGENE is a mixture of halogenated tertiary amine and organic salts 

(<15%), polymeric biguanide, hydrochloride surface active agents, corrosion inhibitor, chelating 

agents, stabilising agents and demineralised water (International 2020) . Spray application of an 

earlier branded formulation of TriGene has been shown to effectively kill P. agathidicida 

zoospores on contact, mycelium with 8 days exposure and was associated with a significant 

reduction in oospore viability (Bellgard et al. 2011b). In these studies, no P. agathidicida was 

recovered in soils or surfaces directly treated and sprayed with TriGene, respectively (Bellgard 

et al. 2011b). However, the efficacy of TriGene over time and with ongoing accumulation of soil 

and organic material in solution, such as is found in kauri dieback cleaning stations and 

footbaths, has not yet been tested. Given the general activity of SteriGENE as a non-selective 

disinfectant, care must be taken to minimise their environmental impact with appropriate 

application and disposal to minimise environmental harm, especially in natural ecosystems. 

  



Literature review: Phytophthora agathidicida inoculum deactivation. June 2020. PFR SPTS No. 19646.  

This report is confidential to Ministry for Primary Industries. 

[5] THE NEW ZEALAND INSTITUTE FOR PLANT AND FOOD RESEARCH LIMITED (2020) 

4 Methylated Spirits 

Alcohols have long been used as disinfectants for a range of microbial species and widely  

used for centuries in surgical applications to control infection (Harrington and Walker 1903; 

PRICE 1939). Ethanol and methylated spirits are commonly used in plant pathology laboratories 

and field work at concentrations of 70% v/v with exposure times ranging from 10 s to 5 min 

(Waller et al. 2002). Ethyl alcohol (ethanol) and Isopropyl alcohol (isopropanol, 2-propanol, or 

propan-2-ol) are commonly used at concentrations of 70% v/v to sanitize hands, tools, shoes, 

gloves and hard surfaces. Recent guidelines recommend the use of 60–90% alcohol for 

antisepsis, and disinfection is largely based on early studies dating back to the 1890’s that focus 

on the bactericidal effects of alcohols. Alcohols have numerous benefits as disinfectants as they 

are relatively cheap and easy to obtain, are simple to use and achieve thorough surface contact 

on application to hard surfaces with no need for post treatment washing (Waller et al. 2002). 

While at low concentrations ethanol attracts but does not kill Phytophthora zoospores, at higher 

concentrations of 70–90% it is lethal (Allen and Newhook 1973).  

Ethanol is most commonly available in the form of denatured alcohol (methylated spirits), which 

consists of a mixture of ethanol and methanol. Methylated spirits is often recommended as a 

disinfectant in the management of Phytophthora pathogens as it is cheap, readily available, 

portable and environmentally friendly (Suddaby and Liew 2008). In New Zealand, methylated 

spirits is formulated with either >95 % or 70% ethanol and other solvents including denatured 

benzoate, fluroscein and methyl violet to discourage consumption (Horn 2014). Ethyl alcohol 

and isopropanol are also available as rubbing alcohol in concentrations of 70–90% (in water) 

that can be used directly without further dilution. 

Although ethanol and methylated spirits are commonly used in plant pathology laboratories and 

during field work, few systematic studies on the concentration by time effect of ethanol or 

methylated spirits exposure to Phytophthora pathogens have been carried out at the time-

scales commonly used. James et al. (2012) found that ethanol at 70 and 90% concentrations 

prevented growth of Phytophthora ramorum zoospores and chlamydospores at exposure times 

of 5 and 10 min, respectively, but showed variable responses in mycelial growth. In this study,  

7 mm mycelial plugs were exposed to ethanol and then plated onto agar to assess radial 

growth. This assay presumed diffusion of the disinfectant into the agar and did not replicate 

disinfection of naturally contaminated surfaces with soil or organic material (James et al. 2012). 

Our investigation of the literature found the application of ethanol and methylated spirits for 

surface decontamination by spray application and exposures up to 30 s as is commonly 

practiced but remains largely untested on Phytophthora pathogens and has not been assessed 

for P. agathidicida.  
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5 Heat, steam and boiling 

Phytophthora species and other water moulds are relatively sensitive to heat with a direct 

relationship between lethal temperature and time (Shlevin et al. 2003; Ramsfield et al. 2010b). 

The most common methods for applying heat in operational activities are via steam or aerated 

steam (steam/air mixtures), hot water, dry heat, hot compost or solarisation (Ramsfield et al. 

2010a; Funahashi 2015; Funahashi and Parke 2016). Moisture plays a significant role in heat 

treatment with moist heat being substantially more effective than dry heat in killing Phytophthora 

propagules (Lu et al. 2010).  

A considerable number of studies have investigated the response of Phytophthora species to 

heat under a range of conditions and targeting different substrates. Moist heating of materials to 

between 50–60°C or higher for at least 30 min will kill most plant pathogenic fungi and is 

sufficient to kill Phytophthora species (Bollen 1969; Browning et al. 2008; Linderman and Davis 

2008; Lu et al. 2010). In a recent study, Horner and Arnet (2019) showed that P. agathidicida is 

similarly sensitive to heat with no growth observed after incubation at 40°C or higher for 24 h or 

more or at 45°C for 4 h of exposure. Standardised protocols for the heat treatment of bulk 

potting mix, contaminated water and wood over extended periods to eliminate plant pathogens 

are well documented. Each of these is reliant on the uniform distribution of heat and a target 

temperature being achieved throughout the material being treated (Runia and Amsing 2001a; 

Funahashi 2015; Funahashi and Parke 2016; Ramsfield et al. 2016).  

While many studies have investigated extended periods of heat exposure for bulk treatment, 

fewer studies have investigated the temperature response at higher temperatures for short 

periods. As little as 15 s at 44°C is sufficient to kill Phytophthora cryptogea (Runia and Amsing 

2001a). From this study, standard treatments of heating water to 95°C for 30 s and 85°C for  

3 min have been recommended to encompass more recalcitrant viral and fungal pathogens 

(Runia and Amsing 2001b). Such protocols suggest that boiling and the direct application of 

high pressure steam present low-technology options for pathogen decontamination from a 

range of potentially contaminated surfaces. However, we found no studies that have specifically 

investigated very short exposures to direct applications of steam or boiling to eliminate 

Phytophthora species from surfaces or small quantities of contaminated materials.  

Such information would help inform protocols for steam cleaning and non-chemical treatment of 

contaminated equipment. 
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6 Conclusions 

Each of the disinfection methods discussed here have the potential for use in the management 

of P. agathidicida. Despite considerable amounts of work investigating the response of 

Phytophthora pathogens to various disinfection protocols, the specific conditions in which such 

methods are used in practice remain largely untested. In each case, a key consideration must 

be the target material being treated. Such information is critical in ensuring that the appropriate 

approach is taken to disinfection for the material being treated. The establishment of treatment 

dose and response curves for natural inoculum of P. agathidicida across key disinfection 

treatments will enable management prescriptions to be established for a range of applications 

without the need for repeated optimisation for specific treatment scenarios. For P. agathidicida it 

is therefore important to consider the decontamination of infected root and organic material 

when testing the efficacy of treatments. 

The potential environmental impacts and risks of using some chemicals also needs 

consideration for their routine application within natural ecosystems. In the case of chlorine and 

SteriGENE consideration should be used to minimising the volumes being applied and 

potentially discharged into sensitive natural ecosystems.  
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